

STUDY APPROACH: ALL WATER RESOURCES

12

RESOURCE QUALITY OBJECTIVES

ALL WATER RESOURCES Q, R, S CATCHMENTS

groundtruth.co.z

WATER IS LIFE - SANITATION IS DIGNITY

WATER RESOURCE CLASSES

WATER IS LIFE - SANITATION IS DIGNITY

SUMMARY OF IUAs - PRIORITY RU

RESOURCE QUALITY OBJECTIVES: IUA \$01 Class II C/ I C/D С C/D 28

RESOURCE QUALITY OBJECTIVES: RIVERS AND DAMS

	13.4	850G-0673	5 9503	Тз	omo	All indicators.	EWR ate 750A	1000	х	х	х	х	х	х	х	х	х		х	х	×	
	13.5	S20D-0675	4 S20D	h	Swe	All indicators	dcators . EWR site INDW01_R			х	х	х	х	х	х			х	х	х	×	
	13.6	S10J-06954	\$ S10J	W	hite-Kei	All indicators.	indicators. EWR alte WHEIDI_R			х	х	х	х	х	х			х	х	х	х	
	13.7	S10E-06690	9 S10E	w	hite-Kei	Same ecoreg Priority RU 13	the ecoregion, zame RQCIz as lonty RU 12.6															
	13.8	S10F-06448	3 S10F	C.	icadu	No data availu	clate available to zet RQOz															
											13	.6:	W	hite	εK	ei a	ind	Xc	nx	аĽ	Dai	m
						(uantity						Qua	ility			Vegetation					
		RU No. Dams Dam operation System (dam) Reduction in Uve Clarity/ Secchi clarity and levels operating rules storage Disc Indication																				
IU	A	RU No.	Dams		Dam operat and level	ion Sys s oper	tem (dam) rating rules	Redu	ction i storag	in live e	Clari Disc	ity/ Se Indica	cchi ation	Cyar	nobact	eria	Alie plar	n aqua it spec	itic iles	In- Phi SP	chan ragm 1./ree	inel ites ids
IU	A	RU No. 13.9	Dams Xonxa Dam		Dam operat and level X	ion Sys s oper	tem (dam) rating rules	Redu	ction I storag X	in live e	Clari Disc	ity/Se Indica X	cchi stion	Cyar	nobact	eria	Alie plar	n aqua it spec	itic les	In- Phi Sp	chan ragm I./ree X	inel ites ids
IU IUA_SC	A 11	RU No. 13.9 13.1	Dams Xonxa Dam Lubisi Dam		Dam operate and level X X	ion Sys s oper	tem (dam) rating rules	Redu	ction i storag X X	in live e	Clari Disc	ity/ Se Indica X X	cchi ation	Cyar	x	eria	Alie plar	n aqua it spec	itic iles	In- Phi SS	chan ragmi J./ree X X	inel ites ids
IU IUA_SC	A 11	RU No. 13.9 13.1 13.11	Dams Xonxa Dam Lubisi Dam Ncora Dam		Dam operat and level X X X	ion Sys s oper	tem (dam) ating rules	Redu	ction i storag X X X	e e	Clari Disc	Indica X X X	cchi ation	Cyar	x X X	eria	Alie plar	n aqua it spec X X	itic iles	In- Phi SS	chan ragm i./ree X X X	ites ites
IUA_SC	A 11 V	RU No. 13.9 13.1 13.11 VATER IS	Dams Xonxa Dam Lubisi Dam Ncora Dam S LIFE - SA	NIT	Dam operat and level X X X X X X ION IS D	ion Sys s oper	tem (dam) rating rules	Redu	ction I storag X X X	e Uve	Clari Disc	ity/Se Indica X X X	cchi ation	Cyar	X X	eria	Alie plar	n aqua at spec X X	itic iles	In- Phi SS	chan ragm ./ree X X X	inel ites ids

29

29

30 **RESOURCE QUALITY OBJECTIVES: WETLANDS**

Cala Wetland Complex

VATER IS LIFE - SANITATION IS DIGNI

30

28

RESOURCE QUALITY OBJECTIVES: WETLANDS

Cala Wetland Complex

RESOURCE QUALITY OBJECTIVES: WETLANDS Cala Wetland Complex

Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
Valley- bottom	1. Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 18 WET- Health assessment undertaken for the Cala valley-bottom wetland.	The PES of the Cata valley-bottom wetland should not fall below the BAS – B category	Every 5.5 years, repeat the WET-Hashil Level 18 assessment carried on the baseline assessment carried on the baseline assessment, which was baseline deviced on the deviced on the transment method motion of the second carbon the transment is the second carbon test second carbo
	2. Habitat – management of state forests	The extent of state-owned forests in the wetland and its 200m buffer.	The abandoned/ defunct state forests should be excised from the wetland habitat and its associated buffer area (200m).	Monitoring of the vegetation composition within the revegetated zones to ensure there is no encreachment of IAPs. Monitoring should be undertake on an annual basis to ensure active miligation measures can be adopte before any encreachment becomes unmanageable.

TER IS LIFE - SANITATION IS DIGNITY

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUAS01

WRU .	Quants	Composent	RCO	Indicator/Pleasante	AurericLimit
ສູງ ເປລີ 5	520C 520D	Quantity and Aquifer	For weter use applications higher then requirements for Reserve, Schedule 1 and General Authorizations, abstraction rates should not exceed the average recharge values of the aquiter.	Abstraction rates - Monthly Bater Balance	Q < Average recharge per hectore Q < sustainable yield determined by yield test
			For large abstractions, or stressed catchments, increased level of assessment required; Desktop, Repid, Intermediate, Comprehensive.	Secharge estimate Reserve determination Delineation of smaller sub regions	-
			Water Level in bonshole notto exceed CD Medium to long term (1 to 5 years) water level trends (based on drawdown) must show recovery	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines Time series water levels - Monthly	Activementitoring site available - Norie, hydrocensus Mently monitoring site - hydrocensus Peak drawdown in abstraction borehole <ontcal depth<br="">Regional drawdown <75th percentile of identified monitoring</ontcal>
			The radius of influence should not intersect any other protection zone [L]	Radius of influence [r], r = 1.5° ý[(T*rS), T=Transmissiúty(m ² /d), t=Time(daya), S=Goratiúty L = (T*1)/R, T=Transmissiúty(m2/d), t=Groundwater Gradient, R=Recharge(m/d)	Determine from yield test data $r \in L(m)$
		Quality	Prome existing with quality Medium to long term (1 st 5 years) write quality must not exceed 78h percentile of monitoring data point	000, Time taries water quality (Quarterly/Bisteriud)	Anton monthing a line available : 2016 Plank tradi = Craunimo monthing (a potential ang term trend = 75th percential (ingl) for COOL (2) : 44 (2) : 42 (2) :
			Protection zone from microbial pollution	Microbial radius (r), r=2(0.29°T) + 53	v <l(m)< td=""></l(m)<>
		Ecological	Croundwater flow reversal to be prevented near water courses. Protection zone for watercourse is required to protect the ecological reserve	L+(T1)(/R, T+Transmissivity(m2fd), (+Gimundwester Gradient, R+Recharge(m/d) Time series water levels - Monthly Rodyaction abs - Monthly	Determine from yield text data r < 1.(m)

34

38

39 **RESOURCE QUALITY OBJECTIVES: RIVERS AND DAMS**

R IS LIFE - SANITATI

38

40

RESOURCE QUALITY OBJECTIVES: WETLANDS

Hogsback Wetland Complex

Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
Seeps (intact)	1. Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 18 WET- Health assessment undertaken for the intact seep wetlands in the Hogsback complex.	The PES of the intact seep wellands should not fall below the REC of B/C.	Every 3-5 years, repeat the WET-Neeth Level 11 assessment carried on the baseline assessment, which was baseling primary on land-cover types in the wetland and the areas of influence in its catchment. The commented mendating camprise distribution detection of land-cover werforation for each wetland. Specific factors that need to be assessed index: - No latiture expansion of forestry schröders or other catchments. - No latiture assessed the wetlands or their catchments. - No administrational wetland-gaschilders in the wetlands or their catchments. - No administrational wetland-baseling activities in the wetlands or their catchments. - The extend of American branchile should not horase and should below your extend.
	2. Biota - Vandijkophry nus amatolicus	Breeding population of Vandjikophrymus amatolicus (the Amathole Toad)	Maintain a viable breeding population of the Amathole Toad in the seep wetlands	The status of the Amsthole Toad should be monitored in collaboration with the Endangered Wildlife Trust, who are afready engaged in monitoring this species in the general Hoppback area. This should be reported every 3 – 5 years.
w	ATER IS LIFE	- SANITATION I	S DIGNITY	

RESOURCE QUALITY OBJECTIVES: IUA_S02 Class II D 37

RESOURCE QUALITY OBJECTIVES: WETLANDS Hogsback Wetland Complex

WRU	Wetland Name	Туре	PES	EIS	BAS	Component Prioritised
						1. Habitat – Ecological Condition
		Seeps (intact)	с	A	B/C	2. Biota - Vandijkophrynus amatolicus
						Habitat – Wise use and grazing
						Habitat - Ecological Condition
		Seeps (degraded)				Habitat - IAPs
WRU 13	Wetland		D	в	D	Habitat – Ecological connectivity
	Complex					Habitat – Wise use and grazing
					010	Habitat – Ecological Condition
		Unchannelled valley-Bottom	L.	в	B/C	Habitat - IAPs
						3. Habitat – Ecological Condition
		Fioodplain	C C	в	B/C	4. Habitat - Geomorphology

R IS LIFE - SANITAT N IS D

39

4 **RESOURCE QUALITY OBJECTIVES: WETLANDS**

Hogs	враск и	vetiand C	omplex	
Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
Floodplain	3. Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 18 WET- Health assessment undertaken for the intact seep wetlands in the Hogsback complex.	The PES of the floodplain wetlands should not fall below the REC of B/C	Every 5-5 years, report the VET-Health Level 18 assessment carried our in the baseline assessment, which was based primarily on land-cover types in the wetland and the areas of influence in its calciment. This recommended monhating comprises developed bettering of land-cover change in the wetland and its calciment, as well as all east a base of field indication for each valued. Specific factors that need to be assessed indicate. No further expansion of forestry activities or other implanging land uses in the remaining natural areas of the wetlands. On the the additional wetlenceful calcimiter in the wetlands on the height developed months in the wetlands on the - No further candication/travensing/idention of the remaining intact areas of the wetland.
	4. Habitat - Geomorpholo 99	The risk of channel avulsion in the floodplain wetland.	The rehabilitation structures within the floodplain need to be reviewed, and the integrity of the channel and the geomorphic functioning of the floodplain wetland need to be monitored.	The floodpain welfard should be reviewed every 3-5 years during PGS motioning. The event of sediment depositions and shared resions within the Sociption welfard should be reviewed with each its stat. Rehabilition requirements and exclusions and should be related as a state of the social should be also and the social should be also and welfare social should be also and the social should be address in controlled in the Bodgiah welfare have greatly increased the liabilities of charanet analogia, and in terms of the long-level insteady of health.
w	ATER IS LIFE	- SANITATION IS	DIGNITY	

F		sol		E		<u>л іт</u>				S· 111/	^	s٥	3
		Cla	ss II	end Joen Roer Part Front	may Cathrenh Is OVA Rure Stor. Is OVA Rure Stor. Is Overstanding Research							B/C	
					-ne					_	1		
	•			5	ne	PRORITIS	ATION OF RESO	URCE UNITS FOR ALL WA	TER RESOL	RCES FOR ROOM	1		
IUA No.	IUA Code		R		- re	PRORITIS	ATION OF RESO	URCE UNITS FOR ALL WA	TER RESOL	RCES FOR RQOs	2		Wetlands
IUA No.	IUA Code	RU No.	R) SQ Reach	eers Quat	River	PRORITIS RU No.	ATION OF RESO	URCE UNITS FOR ALL WATER	TER RESOU	RCES FOR ROOS sundwater Groundwater	RU	Quarts	Wetlands Wetlands
IUA No.	IUA Code	RU No.	R) SQ Reach S60A-07602	erera Quat	River	PRORITIS RU No. 15.8	ATION OF RESO Jama Dama Wiggleauxde	Estuaries Estuaries Estuaries Graat Kal	Gr RU	RCES FOR RQOX bundwater Groundwater	RU	Quata	Wetlanda Wetlands
IUA No.	IUA Code	RU No. 15.1 15.2	R) SQ Reach S00A-07602 S00A-07605	0001 500A	River Gebu Rubuel	PRORITIS RU No. 15.8 15.9	ATION OF RESO Dama Dama Wriggleawade Gouwa	URCE UNITS FOR ALL WAT Estuaries Estuaries Great Kei	Gr RU	RCES FOR RQOs oundwater Groundwater	RU	Quata	Wetlands Wetlands
IUA No.	IUA Code	RU No. 15.1 15.2 15.3	R) SQ Reach S00A-07002 S00A-07005 S00B-07035	9001 9001 500A 500B	River Gubu Rubusi	PRIORITIS RU No. 15.8 15.9 15.10	ATION OF RESO Anna Dama Wrigglasseade Gouves Xiirus	URCE UNITS FOR ALL WA Estuaries Estuaries Costat Kal	Gr RU	RCES FOR RQON oundwater Groundwater	RU	Quata	Watlands Wotlands
1UA No.	RUA Code	RU No. 15.1 15.2 15.3 15.4	RF SQ Reach S60A-07662 S60A-07605 S60B-07635 S70A-07454	9004 9004 520A 520A 5208	River Gabu Kubusi Great Kel	PRORITIS RU No. 15.8 15.9 15.10	ATION OF RESO Dama Dama Wilggianwada Gouva Xilroa	URCE UNITS FOR ALL WA Estuaries Estuaries Graat Mai	RU	RCES FOR RQON oundwater Groundwater	RU	Quata	Wetlands Wetlands
IUA No.	IUA Code	RU No. 15.1 15.2 15.3 15.4 15.5	R/ 5Q Reach 500A-07652 500A-07655 500B-07635 570A-07454 570D-07259	9004 520A 520A 520B 570A 570D	River Gubu Kubusi Great Kai Goswa	PRORITIS RU No. 15.8 15.9 15.10	ATION OF RESO Anna Darna Wriggleswade Gouves Xilrues	URCE UNITS FOR ALL WA Estuaries Estuaries Coust Kei	TER RESOL	RCES FOR ROOM aundwater Groundwater	RU	Quatta	Wetlands Wetlands
1UA No.	UA Code	RU No. 15.1 15.2 15.3 15.4 15.5 15.6	R) 5Q Reach 560A-07662 560A-07605 560B-07635 570A-07454 570D-07259 570D-07367	9001 500A 500A 570A 570D 570D	River Gobu Rubusi Great Kel Gouwa Gouwa	PRIORITIS RU No. 15.8 15.9 15.10	ATION OF RESO Dama Wiggleswade Gozes Xilros	URCE UNITS FOR ALL WAT Estuaries Estuaries Grant Kat	Gr RU	RCES FOR ROOM aundwater Groundwater	RU	Quala	Wetlands Wetlands

and 51

RESOURCE QUALITY OBJECTIVES: RIVERS AND DAMS

RESOURCE QUALITY **OBJECTIVES: ESTUARIES** Nahoon Estuary WATER IS LIFE - SANITATION IS I

54

52

KwaMasele Wetlands WRU 26 KwaMase Wetland Complex ATER IS LIFE - SANITATION IS DIGN

53

51

RESOURCE QUALITY OBJECTIVES: WETLANDS

KwaMasele Wetlands

RESOURCE QUALITY OBJECTIVES: WETLANDS KwaMasele Wetlands

	Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
	Valley Bottom and Seeps	3. Habitat – Wise-use	Extent of the subsistence farming lands and grazing in the wedand in relation to the extent to the extent baseline assessment	Create a wetland management plan. The eater of subsidiance advectory of subsidiance should be managed to should be managed to should be managed in the baseline assessment, advectory advectory plandloss have been adviced have been Right of a single maintained.	Extensive grazing and the currently active agricultural practices in the wetlands pose a large threat to be wetland's integrity and the violatily of the violenzable pose as large threat to be wetland's integrity and the violatily of the violenzable applications are currently as insportant source of aductations and income generation for search meta-based and surrounding the Kaukadeev wetland. These uses contribute to the wetla-being of local households and there is, therefore, a deal to support these advises, but antimatensouly an end to porticed and tarming and livesdock searing practices. Existing globelmes such as WET. Sustainable Use (Dotes, 2010) can be used to assess the ecological sustainables of the Kaukadeev dealerd, as well as marks. These would aductable recommendations for sustaining the used of the WRL. This would aductable recommendation for sustaining the used of the WRL. This would aductable to constrain the used to the WRL. These would aductable to constraining the used of the WRL. These would aductable add constraining the used and the WRL. These would aductable add constraining the used and the WRL to be assessment, it also did possible to restrained in places to the assessment, it also did possible to restrained to the operation of the operation.
	WA	ATER IS LIFI	E - SANITATION	IS DIGNITY	
1					

53 **RESOURCE QUALITY OBJECTIVES: WETLANDS**

										Cor	riponei	nt.					-
					Qua	ntity			Quality				Habita			Biota	
RU No.	SQ Reach	Quat	River	Rationale	LowFlows	High Flows	Nubletta	Safes	System variables	Toxics	Pathogens	Geomorphology	Riparian vegetation		Rah	Aquatic macroinvent ebrates	Distoms
.1	Q30B-07056	Q30B	Pauls	Ephemeral - no RQO'z													
2	Q30B-07051	Q30B	Pauls	Ephemeral - no RQO's													Г
3	Q30E-07122	Q30E	Great Fish	Part of transfer scheme owing to importance of water supply to Opebarha. There is a priority RU on the Great Flah further down in ILN_QCD where more appropriate to set RQOs.													
4	Q21B-06831	Q21B	Great Fish	Same ecoregion, same RQOs as Phiosty RU 8.5.													Γ
5	Q21B-06817	Q21B	Great Fish	Selected according to the RU evaluation tool. Riparian set oning to agriculture encroachment into the riparian zone										x			x
.6	Q80B-7553	Q80B	Little Fish (upper)	Ephemeral - no RQO'z													
.7	Q 13B-06763	Q138	Great Brak	Part of transfer scheme owing to importance of water supply to Opebenta. There is a priority RU on the Great Fish further down in UA_QOD where more appropriate to sat RQOD.													

RESOURCE QUALITY OBJECTIVES: RIVERS

57

RESOURCE QUALITY OBJECTIVES: WETLANDS Loodsberg Wetland

WATER IS LIFE - SANITATION IS DIGNITY

	Quarte	COMPONENT	NV .	Interaction and the	
,m20	Q34A Q34B Q34C Q34D	Quantity and Aquifer	For water use applications higher than cequirements for Reserve, Schedule 1 and General Authorizations, abstraction rates should not exceed the average recharge values of the aquifer.	Abstraction rates - Manthly Water Belance	Q < Average recharge per hectare Q < sustainable yield determined by yield test.
			For large abstractions, or stressed catchments, increased level of assessment required; Desktop, Rapid, intermediate, Comprehensive.	Recharge estimate Reserve determination Delineation of smaller sub regions	•
			Water Level in bomhole notts exceed CD Medium to long term (1 to 5 years) water level trends (based on drawdown) must show recovery	Groundwater lowels at active monitoring boreholes using Groundwater Monitoring Goldelines Time series water levels - Monthly	Active monitoring site available : 12No Peak drawdoen in abstraction borehole < critical depth Regional peak groundwater drawdown < 43m Regional LT groundwater drawdown < 75m percentile of 31 m
			The radius of influence should not intersect any after protection zone $\left[U \right]$	Radius of influence (r), r = 1.5°√(T*VS), T=Transmissivity(m ² /d), t=Time(days), S=Storativity L=(T*)/R, T=Transmissivity(m2/d), i=Groundwater Gradient, R=Racharge(m/d)	Determine from yield test data $r \in L(m)$
		Quality	Preserve existing water quality Maduan to long time (1 st Space) water quality must not access 72th percentile of monitoring data point	000. Tine series water quality (Quarterly / Bi annual)	Active monthing the available: 12% Packet multi reason monthing bondeli Long term tend < 750 percentle (mg1) for COO; C < 42, C < 40, F < 40, NO3H02 < 23, No4 < 40, SOL < 70,
			Protection zone from microbial pollution	Microbial radius (r). r = 2(0.28°T) + 53	r <l(m)< td=""></l(m)<>
		Ecological	Croundwater flow reversal to be prevented near water courses Protection zone for watercourse is required to protect the ecological reserve	L+(T1)/R,T+Transmissivity(m2/d), i+Groundwater Gradiant, B-Recharge(m/d) Time series water levels - Monthly Abstraction rates - Monthly	Determine from yield test data $t \in \mathbb{L}[m]$

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

RESOURCE QUALITY OBJECTIVES: WETLANDS Loodsberg Wetland

Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
Seep	1. Habitat – Ecological Condition	Desktop and field verified PES category based on a Level 1B WET-Health assessment undertaken for the Loodsberg seep wetlands.	The PES of the Loodsberg seep wetlands should not fall below the REC, which is a B category.	Every 3-3 years, the VET Health Level 18 assessment careful out in this balance assessment offeed to be regarded, with was based primary on land-core types in the section 2 and the arrays of hilbarros in the califormet. The section of the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2. Section features that needs to be assessed include - No additional new furrows or drains are to be excarded in the extended. The section 2 and the section 2 and the section 2 and the califormic of the section 2 and the section 2 and the section 2 and the extended of the section 2 and the section 2 and the section 2 and the califormic of the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the califormic of the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the section 2 and the califormic of 2 and the section 2 and the section 2 and the section of the section 2 and the section 2

WATER IS LIFE - SANITATION IS DIGNITY

Step: Finalise and Gazette

Publish the class configurations and their associated RQOs in the

ornment Gazette

NEXT STEPS:

ikeholder on RUs

70

Step: Agree RUs, RQOs &

numerical limits with stakeholde

Draft Gazette template: end-June 2025

 Public meeting: August/September 2025 Minister to sign off Gazette
water Is LIFE - SANITATION IS DIGNITY

merical limits

· Out for public review: September - October 2025 (60 days)

THANK YOU!

Professional Service Provider: Stakeholder Engagement Specialist Ms Simlindile Mahlaba 076 177 4142 / 033 343 2229 Stakeholder.fish@groundtruth.co.za

Project Director Dr Mark Graham mark@groundtruth.co.za

Project Manager Mrs Kylie Farrell 0836864212 Kylie.farrell9@gmail.com

Department of Water and Sanitation: Project Manager Mr Lawrence Mulangaphma mulangaphumaL@dws.gov.za

Project Manager Ms Rendani Mudzanani mudzananiR@dws.gov.za

All study reports can be accessed from the DWS website: https://www.dws.gov.za/RDM/WRCS/

VATER IS LIFE - SANITATION IS DIGNITY